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Abstract

Fuzzy C-Means (FCM) clustering is a widely used algorithm for data partitioning, particularly when clusters
exhibit overlap. However, its performance can be significantly impacted by sensitivity to initial conditions
and susceptibility to noise. This paper proposes an Enhanced Fuzzy C-Means (EFCM) algorithm designed
to mitigate these limitations. EFCM integrates a density-based initialization strategy using kernel density
estimation, employs the robust Mahalanobis distance metric to handle noise and outliers, and incorporates
Silhouette index-based adaptive parameter selection. The algorithm’s effectiveness is evaluated on the
challenging Higgs Boson dataset from Kaggle, a high-dimensional and noisy dataset commonly used in high-
energy physics research. Results demonstrate EFCM’s superior performance compared to traditional FCM in
terms of clustering accuracy, execution time, and precision.
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1. Introduction

Clustering, a fundamental technique in unsupervised
learning, plays a crucial role in knowledge discovery
and pattern recognition. Fuzzy C-Means (FCM) is a
prominent fuzzy clustering algorithm that allows data
points to belong to multiple clusters with varying
degrees of membership. While FCM is effective in
handling overlapping clusters, its performance is often
compromised by its sensitivity to the initial selection
of cluster centers, its vulnerability to noise and
outliers, and the need for manual parameter tuning.
These limitations can lead to suboptimal clustering
results, particularly when dealing with complex and
high-dimensional datasets.

This paper introduces the Enhanced Fuzzy
C-Means (EFCM) algorithm, designed to address
these challenges. EFCM incorporates three key
enhancements.

Density-Based Initialization: Instead of the traditional
random initialization, EFCM employs a kernel density
estimation (KDE) based approach to identify regions

of high data density. These high-density regions are
then used to initialize the cluster centers, leading to
a more representative starting point for the algorithm
and promoting faster convergence.

Robust Distance Metric: EFCM utilizes the
Mahalanobis distance, a robust alternative to the
Euclidean distance, to measure the dissimilarity
between data points and cluster centers. The
Mahalanobis distance accounts for correlations
between features and is less sensitive to outliers,
thereby improving the algorithm’s resilience to
noise.

Adaptive Parameter Selection: EFCM incorporates
an automatic parameter selection mechanism based
on the Silhouette index. This eliminates the need
for manual tuning of the number of clusters and the
fuzzification parameter, making the algorithm more
adaptable to diverse datasets.

2. Related Work

This section provides a comprehensive overview of
existing research related to FCM enhancements.
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2.1 Fuzzy C-Means Clustering

Traditional FCM: The original FCM algorithm [1]
aims to partition data by minimizing a weighted sum
of squared errors, allowing for fuzzy memberships.
However, its reliance on the Euclidean distance and
random initialization makes it susceptible to noise,
outliers, and convergence to local optima.

FCM Variants: Numerous FCM variants have been
proposed to address these limitations. Gustafson-
Kessel (GK) FCM [2] employs an adaptive distance
metric based on the covariance matrix of each cluster,
enabling it to handle clusters with varying shapes
and sizes. Fuzzy Possibilistic C-Means (FPCM) [3]
combines fuzzy and possibilistic memberships to
enhance robustness to outliers.

2.2 Improved Initialization Methods

Density-based Initialization: Density-based
initialization methods aim to select initial cluster
centers that are representative of the underlying data
distribution. KDE-based initialization [4], as used in
our approach, estimates the local density of data points
using kernel functions and selects high-density points
as initial cluster centers. Other density-based methods
include k-nearest neighbor density estimation [5] and
mean-shift based initialization [6].

Other  Initialization  Strategies: Alternative
initialization  strategies  include  grid-based
initialization [7], which partitions the data space into
a grid and selects centers within high-density grid
cells, and initialization using evolutionary algorithms
[8], which optimize the initial cluster centers using
genetic algorithms or particle swarm optimization.

2.3 Robust FCM Algorithms

Robust Distance Metrics: Robust FCM algorithms
often incorporate distance metrics that are less
sensitive to noise and outliers. The Mahalanobis
distance [9], employed in our EFCM, accounts for
correlations between features and is less affected by
outliers compared to the Euclidean distance. Other
robust distances include the trimmed mean distance
[10] and the Minimum Covariance Determinant
(MCD) based distance [11].

Weighted FCM: Weighted FCM algorithms [12]
assign weights to data points based on their likelihood
of being outliers. Data points with low weights have
less influence on the clustering process, effectively
mitigating the impact of noise.

2.4 Cluster Validity Indices

Silhouette Index: The Silhouette index [13] provides
a measure of how similar a data point is to its own

cluster compared to other clusters. It is used in our
EFCM for parameter selection.

Davies-Bouldin Index: The Davies-Bouldin index
[14] evaluates the ratio of within-cluster scatter to
between-cluster separation.

Other Indices: Other cluster validity indices include
the Calinski-Harabasz index [15] and the Dunn index
[16].

2.5 Parameter Selection Methods

Grid Search: Grid search, as employed in our
approach, systematically explores a predefined range
of parameter values to find the optimal combination.

Optimization Algorithms: Optimization algorithms
like genetic algorithms [17] and particle swarm
optimization [18] can be used for more efficient
parameter search.

3. Proposed Method: Enhanced Fuzzy
C-Means (EFCM)
EFCM combines density-based initialization, a robust

distance metric, and adaptive parameter selection to
overcome the limitations of traditional FCM.

3.1 Density-Based Initialization

EFCM utilizes KDE with a Gaussian kernel to estimate
the density of each data point

pi = X exp(-|[xi - xjl[* / (267))

where p; represents the density of data point x;, ¢ is the
kernel bandwidth (chosen via k-fold cross-validation),
and the summation is performed over all data points
x;. The top ¢ densest points are then selected as the
initial cluster centers.

3.2 Robust Distance Metric
EFCM employs the Mahalanobis distance.
d_M(xi, vj) = sqrt((x; - vj)T S (i - vj))

where S is the inverse of the covariance matrix S (a
robust estimate like the MCD can be used). The FCM
update rules, adapted for the Mahalanobis distance,
are.

Ui = 1 /Zk (d_M(Xi, Vj) / d_M(Xi, Vk))/\(Z/(m—l))
v =2 (W™ xj) /% u;™
3.3 Adaptive Parameter Selection

EFCM utilizes the Silhouette index to determine
the optimal number of clusters (c) and fuzzification
parameter (m). A grid search is performed over a
range of ¢ and m values, and the combination that
maximizes the Silhouette score is selected.
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3.4 EFCM Algorithm

Input: Dataset X, ranges for ¢ and m.
Initialization: initialization
(Section 3.1).

Apply density-based

Parameter Search: a. For each combination of ¢ and
m: i. Run robust FCM (Section 3.2). ii. Calculate
Silhouette index. b. Select ¢ and m that maximize the
Silhouette index.

Final Clustering: Run robust FCM with the optimal
c and m.

Output: Cluster centers, membership matrix.

4. Experimental Results

This section presents the evaluation of EFCM on the
Higgs Boson dataset.

4.1 Dataset

The Higgs Boson dataset, sourced from Kaggle, is a
benchmark dataset in high-energy physics. It consists
of 250,000 instances with 33 features, representing
properties derived from proton-proton collisions. The
dataset is high-dimensional, noisy, and imbalanced,
posing a significant challenge for clustering
algorithms. The goal is to distinguish between signal
events (Higgs boson occurrences) and background
events.

4.4 Results and Discussion
Table 1. Comparison of Accuracy, Precision and Execution Time

4.2 Evaluation Metrics

The performance of EFCM and traditional FCM 1is
evaluated using the following metrics.

Accuracy: Percentage of correctly clustered instances.
Since the ground truth labels are available, we can
calculate the clustering accuracy.

Execution Time: Time taken by the algorithm to
complete the clustering process.

Precision: Measures the proportion of correctly
identified signal events (assuming one cluster
represents the signal). Precision is calculated as
Precision = True Positives / (True Positives + False
Positives).

4.3 Experimental Setup

e The experiments were conducted using Python
with libraries like scikit-learn and NumPy.

e The kernel bandwidth (o) for KDE was chosen
using 5-fold cross-validation.

e The range for the number of clusters (c) was
explored from 2 to 10.

e The range for the fuzzification parameter (m) was
explored from 1.5 to 3.

e The results are averaged over 10 independent
runs.

Algorithm Accuracy (%) Execution Time (s) Precision (%)
Traditional FCM 65.2 120 60.5
EFCM 78.5 95 75.2
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5. Discussion

The results demonstrate that EFCM significantly
outperforms traditional FCM on the Higgs Boson
dataset. EFCM achieves higheraccuracy and precision,
indicating its ability to better separate signal and
background events. The improved performance can
be attributed to the density-based initialization, which
provides better starting points for the algorithm, and
the robust Mahalanobis distance, which reduces the
impact of noise and outliers. Furthermore, the adaptive
parameter selection using the Silhouette index ensures
that EFCM finds optimal parameters for the dataset,
eliminating the need for manual tuning. EFCM also
exhibits a reduction in execution time, likely due to
faster convergence with the improved initialization.

6. Conclusion

This paper presented EFCM, an enhanced FCM
algorithm designed to address the limitations of
traditional FCM. EFCM integrates density-based
initialization, a robust distance metric, and adaptive
parameter selection. Evaluation on the challenging
Higgs Boson dataset demonstrates EFCM’s superior
performance in terms of accuracy, execution time,
and precision. Future work will explore EFCM’s
scalability to even larger datasets and its applicability
to other high-dimensional domains.
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