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1. Introduction
Clustering, a fundamental technique in unsupervised 
learning, plays a crucial role in knowledge discovery 
and pattern recognition. Fuzzy C-Means (FCM) is a 
prominent fuzzy clustering algorithm that allows data 
points to belong to multiple clusters with varying 
degrees of membership. While FCM is effective in 
handling overlapping clusters, its performance is often 
compromised by its sensitivity to the initial selection 
of cluster centers, its vulnerability to noise and 
outliers, and the need for manual parameter tuning. 
These limitations can lead to suboptimal clustering 
results, particularly when dealing with complex and 
high-dimensional datasets.
This paper introduces the Enhanced Fuzzy 
C-Means (EFCM) algorithm, designed to address 
these challenges. EFCM incorporates three key 
enhancements.
Density-Based Initialization: Instead of the traditional 
random initialization, EFCM employs a kernel density 
estimation (KDE) based approach to identify regions 

of high data density. These high-density regions are 
then used to initialize the cluster centers, leading to 
a more representative starting point for the algorithm 
and promoting faster convergence.
Robust Distance Metric: EFCM utilizes the 
Mahalanobis distance, a robust alternative to the 
Euclidean distance, to measure the dissimilarity 
between data points and cluster centers. The 
Mahalanobis distance accounts for correlations 
between features and is less sensitive to outliers, 
thereby improving the algorithm’s resilience to 
noise.
Adaptive Parameter Selection: EFCM incorporates 
an automatic parameter selection mechanism based 
on the Silhouette index. This eliminates the need 
for manual tuning of the number of clusters and the 
fuzzification parameter, making the algorithm more 
adaptable to diverse datasets.

2. Related Work
This section provides a comprehensive overview of 
existing research related to FCM enhancements.
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2.1 Fuzzy C-Means Clustering
Traditional FCM: The original FCM algorithm [1] 
aims to partition data by minimizing a weighted sum 
of squared errors, allowing for fuzzy memberships. 
However, its reliance on the Euclidean distance and 
random initialization makes it susceptible to noise, 
outliers, and convergence to local optima.
FCM Variants: Numerous FCM variants have been 
proposed to address these limitations. Gustafson-
Kessel (GK) FCM [2] employs an adaptive distance 
metric based on the covariance matrix of each cluster, 
enabling it to handle clusters with varying shapes 
and sizes. Fuzzy Possibilistic C-Means (FPCM) [3] 
combines fuzzy and possibilistic memberships to 
enhance robustness to outliers.
2.2 Improved Initialization Methods
Density-based Initialization: Density-based 
initialization methods aim to select initial cluster 
centers that are representative of the underlying data 
distribution. KDE-based initialization [4], as used in 
our approach, estimates the local density of data points 
using kernel functions and selects high-density points 
as initial cluster centers. Other density-based methods 
include k-nearest neighbor density estimation [5] and 
mean-shift based initialization [6].
Other Initialization Strategies:  Alternative  
initialization strategies include grid-based 
initialization [7], which partitions the data space into 
a grid and selects centers within high-density grid 
cells, and initialization using evolutionary algorithms 
[8], which optimize the initial cluster centers using 
genetic algorithms or particle swarm optimization.
2.3 Robust FCM Algorithms
Robust Distance Metrics: Robust FCM algorithms 
often incorporate distance metrics that are less 
sensitive to noise and outliers. The Mahalanobis 
distance [9], employed in our EFCM, accounts for 
correlations between features and is less affected by 
outliers compared to the Euclidean distance. Other 
robust distances include the trimmed mean distance 
[10] and the Minimum Covariance Determinant 
(MCD) based distance [11].
Weighted FCM: Weighted FCM algorithms [12] 
assign weights to data points based on their likelihood 
of being outliers. Data points with low weights have 
less influence on the clustering process, effectively 
mitigating the impact of noise.
2.4 Cluster Validity Indices
Silhouette Index: The Silhouette index [13] provides 
a measure of how similar a data point is to its own 

cluster compared to other clusters. It is used in our 
EFCM for parameter selection.
Davies-Bouldin Index: The Davies-Bouldin index 
[14] evaluates the ratio of within-cluster scatter to 
between-cluster separation.
Other Indices: Other cluster validity indices include 
the Calinski-Harabasz index [15] and the Dunn index 
[16].
2.5 Parameter Selection Methods
Grid Search: Grid search, as employed in our 
approach, systematically explores a predefined range 
of parameter values to find the optimal combination.
Optimization Algorithms: Optimization algorithms 
like genetic algorithms [17] and particle swarm 
optimization [18] can be used for more efficient 
parameter search.

3. Proposed Method: Enhanced Fuzzy 
C-Means (EFCM)
EFCM combines density-based initialization, a robust 
distance metric, and adaptive parameter selection to 
overcome the limitations of traditional FCM.
3.1 Density-Based Initialization
EFCM utilizes KDE with a Gaussian kernel to estimate 
the density of each data point
            ρᵢ = Σⱼ exp(-||xᵢ - xⱼ||² / (2σ²))
where ρᵢ represents the density of data point xᵢ, σ is the 
kernel bandwidth (chosen via k-fold cross-validation), 
and the summation is performed over all data points 
xⱼ. The top c densest points are then selected as the 
initial cluster centers.
3.2 Robust Distance Metric
EFCM employs the Mahalanobis distance.
        d_M(xᵢ, vⱼ) = sqrt((xᵢ - vⱼ)ᵀ S⁻¹ (xᵢ - vⱼ))
where S⁻¹ is the inverse of the covariance matrix S (a 
robust estimate like the MCD can be used). The FCM 
update rules, adapted for the Mahalanobis distance, 
are.
    uᵢⱼ = 1 / Σₖ (d_M(xᵢ, vⱼ) / d_M(xᵢ, vₖ))^(2/(m-1))
    vⱼ = Σᵢ (uᵢⱼᵐ xᵢ) / Σᵢ uᵢⱼᵐ
3.3 Adaptive Parameter Selection
EFCM utilizes the Silhouette index to determine 
the optimal number of clusters (c) and fuzzification 
parameter (m). A grid search is performed over a 
range of c and m values, and the combination that 
maximizes the Silhouette score is selected.
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3.4 EFCM Algorithm

Input: Dataset X, ranges for c and m.

Initialization: Apply density-based initialization 
(Section 3.1).

Parameter Search: a. For each combination of c and 
m: i. Run robust FCM (Section 3.2). ii. Calculate 
Silhouette index. b. Select c and m that maximize the 
Silhouette index.

Final Clustering: Run robust FCM with the optimal 
c and m.

Output: Cluster centers, membership matrix.

4. Experimental Results
This section presents the evaluation of EFCM on the 
Higgs Boson dataset.
4.1 Dataset

The Higgs Boson dataset, sourced from Kaggle, is a 
benchmark dataset in high-energy physics. It consists 
of 250,000 instances with 33 features, representing 
properties derived from proton-proton collisions. The 
dataset is high-dimensional, noisy, and imbalanced, 
posing a significant challenge for clustering 
algorithms. The goal is to distinguish between signal 
events (Higgs boson occurrences) and background 
events.

4.2 Evaluation Metrics

The performance of EFCM and traditional FCM is 
evaluated using the following metrics.

Accuracy: Percentage of correctly clustered instances. 
Since the ground truth labels are available, we can 
calculate the clustering accuracy.

Execution Time: Time taken by the algorithm to 
complete the clustering process.

Precision: Measures the proportion of correctly 
identified signal events (assuming one cluster 
represents the signal). Precision is calculated as 
Precision = True Positives / (True Positives + False 
Positives).
4.3 Experimental Setup

The experiments were conducted using Python •	
with libraries like scikit-learn and NumPy.

The kernel bandwidth (σ) for KDE was chosen •	
using 5-fold cross-validation.

The range for the number of clusters (c) was •	
explored from 2 to 10.

The range for the fuzzification parameter (m) was •	
explored from 1.5 to 3.

The results are averaged over 10 independent •	
runs.

Algorithm Accuracy (%) Execution Time (s) Precision (%)
Traditional FCM 65.2 120 60.5

EFCM 78.5 95 75.2

4.4 Results and Discussion
Table 1. Comparison of Accuracy, Precision and Execution Time

Figure 1. Accuracy Comparison of Fuzzy C-Means and Extended Fuzzy C-Means
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5. Discussion
The results demonstrate that EFCM significantly 
outperforms traditional FCM on the Higgs Boson 
dataset. EFCM achieves higher accuracy and precision, 
indicating its ability to better separate signal and 
background events. The improved performance can 
be attributed to the density-based initialization, which 
provides better starting points for the algorithm, and 
the robust Mahalanobis distance, which reduces the 
impact of noise and outliers. Furthermore, the adaptive 
parameter selection using the Silhouette index ensures 
that EFCM finds optimal parameters for the dataset, 
eliminating the need for manual tuning. EFCM also 
exhibits a reduction in execution time, likely due to 
faster convergence with the improved initialization.

6. Conclusion
This paper presented EFCM, an enhanced FCM 
algorithm designed to address the limitations of 
traditional FCM. EFCM integrates density-based 
initialization, a robust distance metric, and adaptive 
parameter selection. Evaluation on the challenging 
Higgs Boson dataset demonstrates EFCM’s superior 
performance in terms of accuracy, execution time, 
and precision. Future work will explore EFCM’s 
scalability to even larger datasets and its applicability 
to other high-dimensional domains.
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